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A crossover in the scaling law of the Lyapunov exponent? 
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Centre de Physique Thkoriques, CNRS-Luminy, Case 907, F-13288, Marseille Cedex 09, 
France 

Received 23 September 1988, in final form 5 September 1989 

Abstract. We consider products of random matrices appearing in the study of Schrodinger 
operators or dynamical systems. We show how a crossover in the scaling law of the 
Lyapunov exponent takes place when the standard deviation of the process increases. 

1. Introduction 

In this paper we proceed with the analysis of the ‘growth of chaos’ in a situation where 
a product of random symplectic matrices can be used as a good approximation for 
the tangent map of nonlinear Hamiltonian dynamics; see [l]. For applications to 
disordered systems, see [2] and [3]. 

We use the maximum Lyapunov exponent as the indicator of stochasticity as it 
measures the growth of exponential divergence of nearby orbits. 

Such stochastic behaviour occurs in many physical situations. An important motiva- 
tion for our paper was the intriguing problem of anomalous electron energy transport 
which is experimentally observed in magnetically confined plasmas. It has been 
suggested that low-frequency magnetic fluctuations could give an insight into this 
phenomenon. If this is the case, one important quantitative characteristic of the physical 
situation is the correlation length of the electron radial diffusion which is related [4] 
to the radial heat electron transport. It turns out that the inverse of the correlation 
length is precisely the Lyapunov exponent A. 

One of the surprising features of these measurements is that they agree with a 
scaling law A - E * ’ ~ ,  where E is the size of the nonlinear perturbation. Instead, 
mathematical models made with stochastic matrices predict a general scaling of power 
1/2, the scaling of 2/3 being predicted only in the special case of the matrices of 
random elements with mean zero [ 1,5,6]. 

Here we give a possible explanation of this fact, based on the analysis of the scaling, 
both in the mean and in the variance of the process; we discover a universal scaling 
with respect to the variance after a critical value which is mean dependent. At this 
point a crossover takes place. In any case, after this critical value, the scaling in the 
size of the perturbation is the universal 2/3. 

We remark [7] that for the magnetic instabilities in  Tokomak plasmas, the variance 
of the process can also be related to such physical parameters as the location of the 
resonances. For this reason we think that our results are of interest per se. 
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Finally we analyse this scaling in terms of the connectance of the matrices which, 
in turn, can be related to the interconnection of the different degrees of freedom of 
the problem. 

Our analysis starts with an analytic treatment which is not very different from that 
of [ 6 ] ,  except that the use of a tensor product formalism enables us to easily control 
the dependence in both the first and the second moment of the process. 

Our numerical computations illustrate and confirm this analysis. 

2. The power series 

In this study we use the type of matrices appearing as tangent maps in dynamical 
systems. As it is known, we could also take the form of the matrices as they appear 
in the Schrodinger equation on a strip (see [SI),  namely 

where the V are n x n matrices and U is the n x n identity, but the two formulations 
are equivalent. 

So, we consider the symplectic maps 

q m + l =  qm + P m  

P m + l  = P m  +Ef(qm+l) 

where qm, pm E R N  and f is a smooth function and our matrices are the corresponding 
tangent maps; see below. 

The first step of our computations is to derive an expression for the product of the 
matrices in a suitable form for further use. 

We write 

BM =AMAM-I. . . AI 

with the matrices A being symplectic, of the form 
(1) 

A i = ( '  A; 1+A,  ' ) 
where U is the N x N identity and the A, are N x N symmetric, independent and 
identically distributed, matrices. 

In our case we define the maximal Lyapunov exponent (see [SI) as 

where ( e )  stands for the average on the process. If we specialise to the trace norm, 
(3)  becomes: 

1 
A = lim -(log Tr(EB$B,)). 

M + *  2 M  

The matrices A can be written: 

A = J O D + K O A  
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where J and K are 2 x 2 matrices defined as 

J = ( i  :> K = ( Y  y ) .  
Therefore BM has the following form: 

B ,  = (JM @ I ) +  J i 'KJ i2- 'K. .  . K J i ~ + ' - l O A i l + l . .  . A,p+i,-l+,..+,l+l (7) 

where i l  = 0 , 1 , 2 . .  . and i, = 1,2 ,3  . . . for r # 1. 

a: 

p = l  i l + . . . + i p + l =  M 

Now, since 

KJ'K = ( r + l ) K  

and 

K ' = K  

we obtain: 

Notice that (10) gives a complete separation, via the tensor product, of the deter- 
ministic part on the left and the random one on the right side. 

In order to go further we need to interchange the mean procedure and the logarithm. 
Even if, in general, after this exchange we only get an upper bound for the Lyapunov 
exponent, thanks to the absence of intermittence, see [9], we expect a good agreement 
of this quantity with the Lyapunov exponent. Indeed this feeling is confirmed by 
numerical evidence, as will be clear later on, except for the region around the crossover 
for which there may be a difference between these two values. 

3. The scaling law 

First suppose that the matrices Ai are full, i.e. 

Ai = ( a L . r ) L , r = l  ...., N (11) 

all the 4 k . r  are towings of the process, with the only constraint that ak,r = ar,k, and 
denote a =(ak.,) the common mean of the process. 

Let us evaluate the first sum in (10). 
We have 
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and it is clear from the evaluation of the sum with constraint (see ( 4 ) )  that we get the 
following estimate for the first sum: 

M2P" - exp( M m )  
( 2 p +  l)!  

a P N P  
p = 1  

where the non-exponential part was neglected in view of (10). 

appear twice in the trace and therefore leads to correlations. 
The estimation of the second term is more involved since the same matrix A may 

Let us consider 

tr(A, . . . A,,)  ( 1 4 )  

where the matrices A I  . . . A,, are one of the possible choices in the last term of (lo),  
i.e. some of them appearing twice, but no more. Let r be the number of repeated 
matrices and ( n  - 2 r )  the remaining independent matrices in this product. Let {&}, 
k = 1,. . . , N be the canonical bases of R N  and denote by 

( k l ,  k2, .  * * ,  kn) O < k , s N  (15) 

( t k ,  I A2&,) . . ( t k , ,  , A n t k , ) .  (16) 

The trace (15) should be the sum of all the possible chains (16). Each of the chains 
gives a contribution of 

the product 

Y s a " - z s  s = 0,1, . . . , r (17) 

where y = ( U ~ , ~ U ~ , ~ ) .  

In order to evaluate the number of chains of each type we take the two extreme 
cases: first, all the 2r repeated matrices are separated, one from the other, by at least 
one of the ( n  - 2 r )  remaining matrices; the second case considered is that where all 
the 2 r  matrices are adjacent. 

Let us consider the former case: the number of chains giving a contribution y s a n - 2 s ,  
O s s s r ,  is 

where the order of the index is irrelevant, and we see that the first n - 4 r + 2 r  = n - 2r  
(on the left) values of the index in the chain can be freely choosen among the N 
possibilities. Each of the 2" possibilities of the following s pairs gives a contribution 
of order y. Finally for the last ( r  - s) pairs the choice is free except for one of the 
two possibilities that would increase the exponent of y. Therefore there are ( N 2 - 2 )  
possibilities for each pair. The meaning of the combinatorial term is clear. 

We end up in this case with the following expression: 

tr(A, . . . A n )  = Nnan 

In the opposite case, where all the 2r matrices are adjacent we can only perform 
an upper bound since we avoid the combinatory of all the possible positions of the s 
repeated matrix elements inside the part of the chain corresponding to the ( r +  1) 
indexes. The upper bound is obtained where all the s matrices are adjacent. 
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Indeed we can represent such a chain in the following way: 
n - 4 r  2r  2r 

I 

t I I I I 
I I I 
P 

2s 2 s  

The number of different chains giving a contribution of fa"-* ' ,  s = 0,1, . . . , r, is 
therefore bounded by 

(3 N"-"'-s 

and therefore we obtain the following bound: 

tr(Al . . . A,,) d N"a"  1 +- ( LZ)'. 
If we suppose that the matrices A have a connectance N , ,  i.e. = 0 if ( k  - rl> N , ,  

= u ~ , ~ ,  then a good approximation for either (19) or (21) is to replace except for 
N by the mean of the number of occupied entrances in the matrix, N, namely 

where S = O  if ( N  - N,)d 1 or N = 1 and otherwise S = 1. 
Now we come back to (10) in order to estimate the last summation. 
We first perform a change of variables in order to be able to use (19) and (21). 

Writing 
A 

i ,+iz+ . . .+  i k =  i k  k = 1,2, . . . , p + 1 
? 

j l + j 2 + .  . .+ j ,= j ,  r = 1 , 2 ,  . . . , q + 1 

the constraint on the sum in (10) is now 

In view of the above compuJation, a typical term of the sum is such that r of 
indexes i^ coincide with r of the j leading to a value of the trace estimated in (19) and 
( 2 1 )  where, clearly, n = p + q (for simplicity of notation we begin the summation at 
p = q = 0 in order to avoid p + 1 and q + 1 in the formula). 

Now, in this case, the estimation of the trace OF the right side of the tensor product 
is independent of the values of the indexes i and j ,  provided the coincidence condition 
for r of the indexes is fulfilled and we need only to estimate a sum of the type: 

A A  c- G I , .  . * 9 i p I ( j 1 , .  . * , & I .  ( 2 5 )  
;,s s l ,sM 

{IS- S J * i s  
' I = J I .  , ' r = J r  

The sum ( 2 5 )  is only a typical term, since on the one hand there are also terms with 
( p  - 1) instead of p and ( q  - 1) instead of q, and on the other $and, due to the change 
of variables ( 2 3 ) ,  there are also terms where some of the i or j are squared but where 
at the same time the total number p or q is decreased in the same way. Nevertheless 
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it will be clear from the following that (25) gives the leading term in powers of M. 
The fact that we take the first (and no other) r indexes to be coincident does not 
essentially change in the estimation as we shall see. 

We evaluate (25) via the integral (since M is large): 

A A  A A  A A  î’ I # , .  i:ir+, A A  . . . ip j r+ , . .  . jq d i ,  . . . di r  di,+, . . . djq 

where x is in between the correspondent expressions in (19) and (21). 
Notice, that, for each value of q we get a polynomial of degree r in x. 
Now there are two extreme cases: if y is small enough the dominant term of the 

polynomial is for r = 0 and then the leading term in powers of M is obtained for p = q 
and we recover a term of the same type as (13) and the known scaling law in (a)”’. 
Notice that we also discover a scaling law in (fl)’”, and indeed our numerical 
computation (see figure 1 )  confirms this property. In the opposite direction, if y is 
large enough, the dominant term in the polynomial is for r = q, and again in this case 
the leading term in powers of M is obtained for p = q. 

Under this condition we obtain 

and 

or 

according to whether we take (19) or (21). 
Denoting y p  for the right term, with 7 linear in ’y, between the two expressions in 

(29), we finally obtain, combining (27), (28) and (29), the following estimation for the 
last part of (10): 

(30) - exp($~2/32  I / ~ Y I / ~ M )  

If 7 >> a, the first sum in (10) gives no contribution to the Lyapunov exponent, 
according to (9) and we end up with a scaling law of type 

A ( y )  f i2 /371/3 .  (31) 
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Figure 1. Lyapunov exponent as function of N (log-log scale). ( a )  a =0.1 and y=O.Ol; 
( b )  a = 0.001 and y = 0.64. 
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Remark Since  CC E' for a process of size E, i.e. with matrices of the form 

.=(I EA I + E A  ) 
we get in this case a scaling law with exponent 213 as it is the case for a = 0, provided 
the variance of the non-perturbed process is large enough. 

4. Numerical experiments 

We have performed a large number of numerical computations in order to test the 
approximations and the results of the previous sections. We use the uniform or 
Gaussian distributions of the NAG library after the rescaling of a and y. The 
computation is made with double precision and with a stabilisation test. The number 
of iterations needed in any case is between 6 x lo4 and 1 x 10'. First of all we compute 
the Lyapunov exponents for small standard deviation y as a function of the mean 
value a of the process. Our computation shows that the Lyapunov exponent in this 
case (small values of y )  is exactly 

where fl is the mean number of degrees of freedom, given by formula (22). 
Notice that this result agrees with (13). Moreover the substitution of N by fl if 

the matrices are not full and the interchange of the mean procedure and the logarithm 
(see section 2) are in very good agreement with the numerical results. The latter seems 
to indicate the absence of intermittence in this case, since the Lyapunov and generalised 
Lyapunov exponents coincide. We have made tests for N = 1 , .  . . , 6  and the corre- 
sponding possibilities of N,. Figure l ( a )  shows the Lyapunov exponent as a function 
of N (in a log-log scale) in the region y < yc and figure l (b )  the corresponding plot 
for y > yc.  As is clear, the Lyapunov exponent then has the following thermodynamic 
limit ( N  + 00 and N ,  constant): 

A =a (33) 

A ="z. (34) 
We have also tested the case CY = 0 (see [ 6 ] )  but here we notice a difference between 

(31) and the computation of the Lyapunov exponent. A possible explanation for that 
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is the interchange of the mean procedure and the logarithm, made in the derivation 
of (31); see section 2. Indeed, the difference between these two quantities increases 
with N, showing how fluctuations grow. 

Finally we have tested the crossover. In order to do this we fixed a and we measured 
the Lyapunov exponent when y changes, for several values of N and R ( N  from 1 
to 5 with all possible N,) .  Figure 2 shows two plots of the Lyapunov exponent as a 
function of the standard deviation y .  For each fixed a, notice the ‘plateau’ correspond- 
ing to the range of values of y for which the dominant term is as in (13) and therefore 
being constant. After a critical value y c ,  depending on a, the new scaling law clearly 

i 
10 -8  - 6  - 4  - 2  0 

In Ivarioncel 

0 ,  

- 2 4  , , , , I 
-10 -8  -6 -4  - 2  -0 

In lvarioncel 

-4 -3 - 2  -1 0 
In fvartoncel 

Figure 2. Lyapunov exponent as function of y for fixed values of (I (log-log scale): the 
crossover. ( a )  n =0.01 and N = 3; ( b )  n =0.01 and N = 5; ( c )  Particular of ( a )  for y >  yc 
showing the 1 /3  slope. 

emerges and we can see the law 
A - y ’” .  (35) 

We have also made some tests for the dependence on N and large values of y.  It 
seems that a scaling law as NI’* appears, which is compatible with (19) and (21) but 
we could not avoid fluctuations when y is changed. 

Finally, in figure 3 we show yc as a function of the mean a, for two different values 
of N. 
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